
Lightweight Secure Shell (SSH) Signature

Format

Abstract

This document describes a lightweight SSH Signature format that is compatible with SSH
keys and wire formats.

Workgroup:

Internet-Draft:

Published:

Intended
Status:
Expires:
Authors:

Secure Shell Maintenance

draft-josefsson-sshsig-format-03

7 July 2025

Standards Track

8 January 2026

 S. Kinne D. Miller
OpenSSH

S. Josefsson, Ed.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at
.

Discussion of this document takes place on the SSHM Working Group mailing list
(), which is archived at .
Subscribe at .

Source for this draft and an issue tracker can be found at
.

The RFC Editor will remove this note

https://datatracker.ietf.org/doc/draft-
josefsson-sshsig-format/

mailto:ssh@ietf.org https://mailarchive.ietf.org/arch/browse/ssh/
https://www.ietf.org/mailman/listinfo/ssh/

https://gitlab.com/jas/ietf-sshsig-
format

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP
79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note
that other groups may also distribute working documents as Internet-Drafts. The list of
current Internet-Drafts is at .

Internet-Drafts are draft documents valid for a maximum of six months and may be
updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use
Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 8 January 2026.

https://datatracker.ietf.org/drafts/current/

Kinne, et al. Expires 8 January 2026 Page 1

https://datatracker.ietf.org/doc/draft-josefsson-sshsig-format/
https://datatracker.ietf.org/doc/draft-josefsson-sshsig-format/
mailto:ssh@ietf.org
https://mailarchive.ietf.org/arch/browse/ssh/
https://www.ietf.org/mailman/listinfo/ssh/
https://gitlab.com/jas/ietf-sshsig-format
https://gitlab.com/jas/ietf-sshsig-format
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted from this document
must include Revised BSD License text as described in Section 4.e of the Trust Legal
Provisions and are provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Conventions Used In This Document

3. Armored format

4. Blob format

5. Signed Data, of which the signature goes into the blob above

6. IANA Considerations

7. Security Considerations

8. Acknowledgments

9. Implementation Status

10. References

10.1. Normative References

10.2. Informative References

Authors' Addresses

1. Introduction

Secure Shell (SSH) is a secure remote-login protocol. It provides for an
extensible variety of public key algorithms for identifying servers and users to one another.

The SSH key and signature formats have found uses outside of the interactive online SSH
protocol itself. This document specify these formats.

At present, only detached and armored signatures are supported.

[RFC4251]

Internet-Draft SSHSIG July 2025

Kinne, et al. Expires 8 January 2026 Page 2

https://trustee.ietf.org/license-info

It is suggested that when referring to this signature format that the term "SSHSIG" is used.

2. Conventions Used In This Document

The descriptions of key and signature formats use the notation introduced in .

The key words " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", and " " in this
document are to be interpreted as described in BCP 14 when, and
only when, they appear in all capitals, as shown here.

[RFC4251]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD

SHOULD NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3. Armored format

The Armored SSH signatures is ASCII-encoded and consists of a header, a base64
encoded blob, and a footer.

The header is the string "-----BEGIN SSH SIGNATURE-----" followed by a newline. The footer
is the string "-----END SSH SIGNATURE-----" immediately after a newline.

Newlines here is defined as ASCII LF. Some text transfer mechanism may use other line
delimiters, however when Armored SSHSIG signatures are stored in context which are input
to cryptographic hashes or otherwise subject to bit-by-bit comparisons, implementations

 use ASCII LF as the line delimiter to have one canonical representation.

The header be present at the start of every signature. Files containing the signature
 start with the header. Likewise, the footer be present at the end of every

signature.

The base64 encoded blob be broken up by newlines every 76 characters.

Example:

[RFC20]

MUST

MUST

MUST MUST

SHOULD

-----BEGIN SSH SIGNATURE-----
U1NIU0lHAAAAAQAAADMAAAALc3NoLWVkMjU1MTkAAAAgJKxoLBJBivUPNTUJUSslQTt2hD
jozKvHarKeN8uYFqgAAAADZm9vAAAAAAAAAFMAAAALc3NoLWVkMjU1MTkAAABAKNC4IEbt
Tq0Fb56xhtuE1/lK9H9RZJfON4o6hE9R4ZGFX98gy0+fFJ/1d2/RxnZky0Y7GojwrZkrHT
FgCqVWAQ==
-----END SSH SIGNATURE-----

Internet-Draft SSHSIG July 2025

Kinne, et al. Expires 8 January 2026 Page 3

4. Blob format

The publickey field contain the serialisation of the public key used to make the
signature using the usual SSH encoding rules, i.e , , , etc.

Verifiers reject signatures with versions greater than those they support.

The purpose of the namespace value is to specify a unambiguous interpretation domain for
the signature, e.g. file signing. This prevents cross-protocol attacks caused by signatures
intended for one intended domain being accepted in another. The namespace value

 be the empty string.

The reserved value is present to encode future information (e.g. tags) into the signature.
Implementations should ignore the reserved field if it is not empty.

Data to be signed is first hashed with the specified hash_algorithm. This is done to limit the
amount of data presented to the signature operation, which may be of concern if the
signing key is held in limited or slow hardware or on a remote ssh-agent. The supported
hash algorithms for this pupose are "sha256" and "sha512". (Signature algorithms may use
other hash algorithms internally.)

The signature itself is made using the SSH signature algorithm and encoding rules for the
chosen key type. For RSA signatures, the signature algorithm must be "rsa-sha2-512" or
"rsa-sha2-256" (i.e. not the legacy RSA-SHA1 "ssh-rsa").

This blob is encoded as a string using the encoding rules and base64 encoded to
form the middle part of the armored signature.

<CODE BEGINS>
#define MAGIC_PREAMBLE "SSHSIG"
#define SIG_VERSION 0x01

byte[6] MAGIC_PREAMBLE
 uint32 SIG_VERSION
 string publickey
 string namespace
 string reserved
 string hash_algorithm
 string signature

<CODE ENDS>

MUST

[RFC4253] [RFC5656] [RFC8709]

MUST

MUST

NOT

[RFC4253]

Internet-Draft SSHSIG July 2025

Kinne, et al. Expires 8 January 2026 Page 4

5. Signed Data, of which the signature goes into the

blob above

The preamble is the six-byte sequence "SSHSIG". It is included to ensure that manual
signatures can never be confused with any message signed during SSH user or host
authentication.

The reserved value is present to encode future information (e.g. tags) into the signature.
Implementations should ignore the reserved field if it is not empty.

The data is concatenated and passed to the SSH signing function.

<CODE BEGINS>
#define MAGIC_PREAMBLE "SSHSIG"

byte[6] MAGIC_PREAMBLE
 string namespace
 string reserved
 string hash_algorithm
 string H(message)

<CODE ENDS>

6. IANA Considerations

None

7. Security Considerations

The security considerations of all referenced specifications are inherited.

Cryptographic algorithms and parameters are usually broken or weakened over time.
Implementers and users need to continously re-evaluate that cryptographic algorithms
continue to provide the expected level of security.

Implementations has to follow best practices to avoid security concerns, and users needs to
continously re-evaulate implementations for security vulnerabilities.

This signature format embeds the public key, which is usually already available for a verifier
to perform the cryptographic verification with and to make trust decisions. When verifying a
signature cryptographically, it is to use the locally configured public key
rather than the public key provided in the signature. A bit-by-bit comparison of the public
key could also be done. The public key within the signature should be treated as untrusted
input, but it may be used as an identifier to find the locally trusted public key that can be
used to verify the signature.

RSA public keys can be used with both SHA2-256 and RSA2-512, and implementations
 let library defaults chose the variant to use but instead instruct the library

specifically which algorithm to use.

RECOMMENDED

MUST NOT

Internet-Draft SSHSIG July 2025

Kinne, et al. Expires 8 January 2026 Page 5

Some implementation do not explicitly require or validate that the namespace is not empty.
We RECOMMEND that implementations reject those signatures as invalid. Comparing the
namespace value before performing the signature verification be done to provide a
better error condition rather than a generic signature verification failure.

MAY

8. Acknowledgments

The text in this document is from PROTOCOL.sshsig from OpenSSH which appears to have
been contributed to by at least Sebastian Kinne, Damien Miller, Markus Friedl, HARUYAMA
Seigo, Pedro Martelletto, Paul Tagliamonte, Hidde Beydals, and Castedo Ellerman.

9. Implementation Status

This section records the status of known implementations of the protocol defined by this
specification at the time of posting of this Internet-Draft, and is based on a proposal
described in . The description of implementations in this section is intended to
assist the IETF in its decision processes in progressing drafts to RFCs. Please note that the
listing of any individual implementation here does not imply endorsement by the IETF.
Furthermore, no effort has been spent to verify the information presented here that was
supplied by IETF contributors. This is not intended as, and must not be construed to be, a
catalog of available implementations or their features. Readers are advised to note that
other implementations may exist.

According to , "this will allow reviewers and working groups to assign due
consideration to documents that have the benefit of running code, which may serve as
evidence of valuable experimentation and feedback that have made the implemented
protocols more mature. It is up to the individual working groups to use this information as
they see fit

The following example projects maintain an implementation of this protocol:

OpenSSH: C implementation.

Website: https://www.openssh.com/

SSHSIGLIB: Python implementation by Castedo Ellerman.

Website: https://gitlab.com/perm.pub/sshsiglib

SSHSIGN-GO: Go implementation by Benjamin Pannell at SierraSoftworks.

Website: https://github.com/SierraSoftworks/sshsign-go

SSHSIG: Go implementation by Hidde Beydals.

Website: https://github.com/hiddeco/sshsig

GO-SSHSIG: Go implementation by Paul Tagliamonte.

Website: https://github.com/paultag/go-sshsig

REKOR-PKI-SSH: Go implementation by Sigstore/Rekor.

Website: https://github.com/sigstore/rekor/tree/v1.0.1/pkg/pki/ssh

[RFC7942]

[RFC7942]

Internet-Draft SSHSIG July 2025

Kinne, et al. Expires 8 January 2026 Page 6

[RFC20]

[RFC2119]

[RFC4251]

[RFC4253]

[RFC5656]

[RFC8174]

[RFC8709]

[RFC7942]

10. References

10.1. Normative References

, , , ,
, October 1969, .

, ,
, , , March 1997,

.

 and ,
, , , January 2006,

.

 and ,
, , , January 2006,

.

 and ,
, , , December 2009,

.

, ,
, , , May 2017,

.

 and ,
, , ,

February 2020, .

10.2. Informative References

 and ,
, , ,

, July 2016, .

Cerf, V. "ASCII format for network interchange" STD 80 RFC 20 DOI
10.17487/RFC0020 <https://www.rfc-editor.org/rfc/rfc20>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels"
BCP 14 RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-
editor.org/rfc/rfc2119>

Ylonen, T. C. Lonvick, Ed. "The Secure Shell (SSH) Protocol
Architecture" RFC 4251 DOI 10.17487/RFC4251 <https://
www.rfc-editor.org/rfc/rfc4251>

Ylonen, T. C. Lonvick, Ed. "The Secure Shell (SSH) Transport Layer
Protocol" RFC 4253 DOI 10.17487/RFC4253 <https://
www.rfc-editor.org/rfc/rfc4253>

Stebila, D. J. Green "Elliptic Curve Algorithm Integration in the Secure
Shell Transport Layer" RFC 5656 DOI 10.17487/RFC5656
<https://www.rfc-editor.org/rfc/rfc5656>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words"
BCP 14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-
editor.org/rfc/rfc8174>

Harris, B. L. Velvindron "Ed25519 and Ed448 Public Key Algorithms for
the Secure Shell (SSH) Protocol" RFC 8709 DOI 10.17487/RFC8709

<https://www.rfc-editor.org/rfc/rfc8709>

Sheffer, Y. A. Farrel "Improving Awareness of Running Code: The
Implementation Status Section" BCP 205 RFC 7942 DOI 10.17487/
RFC7942 <https://www.rfc-editor.org/rfc/rfc7942>

Authors' Addresses

Sebastian Kinne

 skinne@google.com Email:

Damien Miller

OpenSSH
 djm@mindrot.org Email:

Simon Josefsson ()editor

 simon@josefsson.org Email:

Internet-Draft SSHSIG July 2025

Kinne, et al. Expires 8 January 2026 Page 7

https://www.rfc-editor.org/rfc/rfc20
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc4251
https://www.rfc-editor.org/rfc/rfc4251
https://www.rfc-editor.org/rfc/rfc4253
https://www.rfc-editor.org/rfc/rfc4253
https://www.rfc-editor.org/rfc/rfc5656
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8709
https://www.rfc-editor.org/rfc/rfc7942
mailto:skinne@google.com
mailto:djm@mindrot.org
mailto:simon@josefsson.org

	Lightweight Secure Shell (SSH) Signature Format
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions Used In This Document
	3. Armored format
	4. Blob format
	5. Signed Data, of which the signature goes into the blob above
	6. IANA Considerations
	7. Security Considerations
	8. Acknowledgments
	9. Implementation Status
	10. References
	10.1. Normative References
	10.2. Informative References

	Authors' Addresses

