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1. Introduction 

Secure Shell (SSH)  is a secure remote-login protocol. It provides for an
extensible variety of public key algorithms for identifying servers and users to one another.

The SSH key and signature formats have found uses outside of the interactive online SSH
protocol itself. This document specify these formats.

At present, only detached and armored signatures are supported.

[RFC4251]

Internet-Draft SSHSIG July 2025

Kinne, et al. Expires 8 January 2026 Page 2

https://trustee.ietf.org/license-info


It is suggested that when referring to this signature format that the term "SSHSIG" is used.

2. Conventions Used In This Document 

The descriptions of key and signature formats use the notation introduced in .

The key words " ", " ", " ", " ", " ", " ",
" ", " ", " ", " ", and " " in this
document are to be interpreted as described in BCP 14   when, and
only when, they appear in all capitals, as shown here.

[RFC4251]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD

SHOULD NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3. Armored format 

The Armored SSH signatures is ASCII-encoded  and consists of a header, a base64
encoded blob, and a footer.

The header is the string "-----BEGIN SSH SIGNATURE-----" followed by a newline. The footer
is the string "-----END SSH SIGNATURE-----" immediately after a newline.

Newlines here is defined as ASCII LF. Some text transfer mechanism may use other line
delimiters, however when Armored SSHSIG signatures are stored in context which are input
to cryptographic hashes or otherwise subject to bit-by-bit comparisons, implementations 

 use ASCII LF as the line delimiter to have one canonical representation.

The header  be present at the start of every signature. Files containing the signature 
 start with the header. Likewise, the footer  be present at the end of every

signature.

The base64 encoded blob  be broken up by newlines every 76 characters.

Example:

[RFC20]

MUST

MUST

MUST MUST

SHOULD

-----BEGIN SSH SIGNATURE-----
U1NIU0lHAAAAAQAAADMAAAALc3NoLWVkMjU1MTkAAAAgJKxoLBJBivUPNTUJUSslQTt2hD
jozKvHarKeN8uYFqgAAAADZm9vAAAAAAAAAFMAAAALc3NoLWVkMjU1MTkAAABAKNC4IEbt
Tq0Fb56xhtuE1/lK9H9RZJfON4o6hE9R4ZGFX98gy0+fFJ/1d2/RxnZky0Y7GojwrZkrHT
FgCqVWAQ==
-----END SSH SIGNATURE-----
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4. Blob format 

The publickey field  contain the serialisation of the public key used to make the
signature using the usual SSH encoding rules, i.e , , , etc.

Verifiers  reject signatures with versions greater than those they support.

The purpose of the namespace value is to specify a unambiguous interpretation domain for
the signature, e.g. file signing. This prevents cross-protocol attacks caused by signatures
intended for one intended domain being accepted in another. The namespace value 

 be the empty string.

The reserved value is present to encode future information (e.g. tags) into the signature.
Implementations should ignore the reserved field if it is not empty.

Data to be signed is first hashed with the specified hash_algorithm. This is done to limit the
amount of data presented to the signature operation, which may be of concern if the
signing key is held in limited or slow hardware or on a remote ssh-agent. The supported
hash algorithms for this pupose are "sha256" and "sha512". (Signature algorithms may use
other hash algorithms internally.)

The signature itself is made using the SSH signature algorithm and encoding rules for the
chosen key type. For RSA signatures, the signature algorithm must be "rsa-sha2-512" or
"rsa-sha2-256" (i.e. not the legacy RSA-SHA1 "ssh-rsa").

This blob is encoded as a string using the  encoding rules and base64 encoded to
form the middle part of the armored signature.

<CODE BEGINS>
#define MAGIC_PREAMBLE "SSHSIG"
#define SIG_VERSION    0x01

byte[6] MAGIC_PREAMBLE
 uint32 SIG_VERSION
 string publickey
 string namespace
 string reserved
 string hash_algorithm
 string signature

<CODE ENDS>

MUST

[RFC4253] [RFC5656] [RFC8709]

MUST

MUST

NOT

[RFC4253]
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5. Signed Data, of which the signature goes into the

blob above 

The preamble is the six-byte sequence "SSHSIG". It is included to ensure that manual
signatures can never be confused with any message signed during SSH user or host
authentication.

The reserved value is present to encode future information (e.g. tags) into the signature.
Implementations should ignore the reserved field if it is not empty.

The data is concatenated and passed to the SSH signing function.

<CODE BEGINS>
#define MAGIC_PREAMBLE "SSHSIG"

byte[6] MAGIC_PREAMBLE
 string namespace
 string reserved
 string hash_algorithm
 string H(message)

<CODE ENDS>

6. IANA Considerations 

None

7. Security Considerations 

The security considerations of all referenced specifications are inherited.

Cryptographic algorithms and parameters are usually broken or weakened over time.
Implementers and users need to continously re-evaluate that cryptographic algorithms
continue to provide the expected level of security.

Implementations has to follow best practices to avoid security concerns, and users needs to
continously re-evaulate implementations for security vulnerabilities.

This signature format embeds the public key, which is usually already available for a verifier
to perform the cryptographic verification with and to make trust decisions. When verifying a
signature cryptographically, it is  to use the locally configured public key
rather than the public key provided in the signature. A bit-by-bit comparison of the public
key could also be done. The public key within the signature should be treated as untrusted
input, but it may be used as an identifier to find the locally trusted public key that can be
used to verify the signature.

RSA public keys can be used with both SHA2-256 and RSA2-512, and implementations 
 let library defaults chose the variant to use but instead instruct the library

specifically which algorithm to use.

RECOMMENDED

MUST NOT

Internet-Draft SSHSIG July 2025

Kinne, et al. Expires 8 January 2026 Page 5



Some implementation do not explicitly require or validate that the namespace is not empty.
We RECOMMEND that implementations reject those signatures as invalid. Comparing the
namespace value before performing the signature verification  be done to provide a
better error condition rather than a generic signature verification failure.

MAY
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9. Implementation Status 

This section records the status of known implementations of the protocol defined by this
specification at the time of posting of this Internet-Draft, and is based on a proposal
described in . The description of implementations in this section is intended to
assist the IETF in its decision processes in progressing drafts to RFCs. Please note that the
listing of any individual implementation here does not imply endorsement by the IETF.
Furthermore, no effort has been spent to verify the information presented here that was
supplied by IETF contributors. This is not intended as, and must not be construed to be, a
catalog of available implementations or their features. Readers are advised to note that
other implementations may exist.

According to , "this will allow reviewers and working groups to assign due
consideration to documents that have the benefit of running code, which may serve as
evidence of valuable experimentation and feedback that have made the implemented
protocols more mature. It is up to the individual working groups to use this information as
they see fit

The following example projects maintain an implementation of this protocol:

OpenSSH: C implementation.

Website: https://www.openssh.com/

SSHSIGLIB: Python implementation by Castedo Ellerman.

Website: https://gitlab.com/perm.pub/sshsiglib

SSHSIGN-GO: Go implementation by Benjamin Pannell at SierraSoftworks.

Website: https://github.com/SierraSoftworks/sshsign-go

SSHSIG: Go implementation by Hidde Beydals.

Website: https://github.com/hiddeco/sshsig

GO-SSHSIG: Go implementation by Paul Tagliamonte.

Website: https://github.com/paultag/go-sshsig

REKOR-PKI-SSH: Go implementation by Sigstore/Rekor.

Website: https://github.com/sigstore/rekor/tree/v1.0.1/pkg/pki/ssh

[RFC7942]

[RFC7942]
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